Search results for "system-environment correlations"

showing 5 items of 5 documents

Non-Markovian Wave Function Simulations of Quantum Brownian Motion

2005

The non-Markovian wave function method (NMWF) using the stochastic unravelling of the master equation in the doubled Hilbert space is implemented for quantum Brownian motion. A comparison between the simulation and the analytical results shows that the method can be conveniently used to study the non-Markovian dynamics of the system.

PhysicsGeometric Brownian motiondynamicLindblad equationCondensed Matter PhysicsStochastic differential equationClassical mechanicsDiffusion processQuantum stochastic calculusQuantum stateMaster equationQuantum dissipationsystem-environment correlationsenvironment
researchProduct

Simulating quantum Brownian motion with single trapped ions

2004

We study the open system dynamics of a harmonic oscillator coupled with an artificially engineered reservoir. We single out the reservoir and system variables governing the passage between Lindblad type and non-Lindblad type dynamics of the reduced system's oscillator. We demonstrate the existence of conditions under which virtual exchanges of energy between system and reservoir take place. We propose to use a single trapped ion coupled to engineered reservoirs in order to simulate quantum Brownian motion.

PhysicsQuantum PhysicsQuantum decoherenceFOS: Physical sciencesTrappingOpen system (systems theory)Atomic and Molecular Physics and OpticsIonMeasurement theoryClassical mechanicsdynamics environments system-environment correlationsQuantum Physics (quant-ph)QuantumBrownian motionHarmonic oscillator
researchProduct

Lindblad- and non-Lindblad-type dynamics of a quantum Brownian particle

2004

The dynamics of a typical open quantum system, namely a quantum Brownian particle in a harmonic potential, is studied focussing on its non-Markovian regime. Both an analytic approach and a stochastic wave function approach are used to describe the exact time evolution of the system. The border between two very different dynamical regimes, the Lindblad and non-Lindblad regimes, is identified and the relevant physical variables governing the passage from one regime to the other are singled out. The non-Markovian short time dynamics is studied in detail by looking at the mean energy, the squeezing, the Mandel parameter and the Wigner function of the system.

PhysicsQuantum PhysicsQuantum decoherenceQuantum dynamicsTime evolutionFOS: Physical sciencesQuantum Physics16. Peace & justice01 natural sciencesAtomic and Molecular Physics and Optics010305 fluids & plasmasOpen quantum systemClassical mechanicsdynamics environments system-environment correlations0103 physical sciencesWigner distribution functionStatistical physicsQuantum Physics (quant-ph)010306 general physicsWave functionQuantumBrownian motionPhysical Review A
researchProduct

Scaling of non-Markovian Monte Carlo wave-function methods

2004

We demonstrate a scaling method for non-Markovian Monte Carlo wave-function simulations used to study open quantum systems weakly coupled to their environments. We derive a scaling equation, from which the result for the expectation values of arbitrary operators of interest can be calculated, all the quantities in the equation being easily obtainable from the scaled Monte Carlo simulations. In the optimal case, the scaling method can be used, within the weak coupling approximation, to reduce the size of the generated Monte Carlo ensemble by several orders of magnitude. Thus, the developed method allows faster simulations and makes it possible to solve the dynamics of the certain class of no…

PhysicsdynamicQuantum PhysicsQuantum Monte CarloMonte Carlo methodFOS: Physical sciences01 natural sciences010309 opticsHybrid Monte Carlo0103 physical sciencesDynamic Monte Carlo methodMonte Carlo integrationMonte Carlo method in statistical physicsStatistical physicsQuasi-Monte Carlo methodsystem-environment correlations010306 general physicsQuantum Physics (quant-ph)environmentMonte Carlo molecular modeling
researchProduct

Hidden entanglement, system-environment information flow and non-Markovianity

2014

It is known that entanglement dynamics of two noninteracting qubits, locally subjected to classical environments, may exhibit revivals. A simple explanation of this phenomenon may be provided by using the concept of hidden entanglement, which signals the presence of entanglement that may be recovered without the help of nonlocal operations. Here we discuss the link between hidden entanglement and the (non-Markovian) flow of classical information between the system and the environment.

Quantum PhysicsPhysics and Astronomy (miscellaneous)Computer scienceFOS: Physical sciencesClassical environmentQuantum entanglementQuantum Physicsmemory effectsSettore FIS/03 - Fisica Della MateriaFlow (mathematics)Simple (abstract algebra)Qubitsystem-environment correlationInformation flow (information theory)Statistical physicsLink (knot theory)system-environment correlationsQuantum Physics (quant-ph)Classical environments
researchProduct