Search results for "system-environment correlations"
showing 5 items of 5 documents
Non-Markovian Wave Function Simulations of Quantum Brownian Motion
2005
The non-Markovian wave function method (NMWF) using the stochastic unravelling of the master equation in the doubled Hilbert space is implemented for quantum Brownian motion. A comparison between the simulation and the analytical results shows that the method can be conveniently used to study the non-Markovian dynamics of the system.
Simulating quantum Brownian motion with single trapped ions
2004
We study the open system dynamics of a harmonic oscillator coupled with an artificially engineered reservoir. We single out the reservoir and system variables governing the passage between Lindblad type and non-Lindblad type dynamics of the reduced system's oscillator. We demonstrate the existence of conditions under which virtual exchanges of energy between system and reservoir take place. We propose to use a single trapped ion coupled to engineered reservoirs in order to simulate quantum Brownian motion.
Lindblad- and non-Lindblad-type dynamics of a quantum Brownian particle
2004
The dynamics of a typical open quantum system, namely a quantum Brownian particle in a harmonic potential, is studied focussing on its non-Markovian regime. Both an analytic approach and a stochastic wave function approach are used to describe the exact time evolution of the system. The border between two very different dynamical regimes, the Lindblad and non-Lindblad regimes, is identified and the relevant physical variables governing the passage from one regime to the other are singled out. The non-Markovian short time dynamics is studied in detail by looking at the mean energy, the squeezing, the Mandel parameter and the Wigner function of the system.
Scaling of non-Markovian Monte Carlo wave-function methods
2004
We demonstrate a scaling method for non-Markovian Monte Carlo wave-function simulations used to study open quantum systems weakly coupled to their environments. We derive a scaling equation, from which the result for the expectation values of arbitrary operators of interest can be calculated, all the quantities in the equation being easily obtainable from the scaled Monte Carlo simulations. In the optimal case, the scaling method can be used, within the weak coupling approximation, to reduce the size of the generated Monte Carlo ensemble by several orders of magnitude. Thus, the developed method allows faster simulations and makes it possible to solve the dynamics of the certain class of no…
Hidden entanglement, system-environment information flow and non-Markovianity
2014
It is known that entanglement dynamics of two noninteracting qubits, locally subjected to classical environments, may exhibit revivals. A simple explanation of this phenomenon may be provided by using the concept of hidden entanglement, which signals the presence of entanglement that may be recovered without the help of nonlocal operations. Here we discuss the link between hidden entanglement and the (non-Markovian) flow of classical information between the system and the environment.